LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SIXTH SEMESTER - APRIL 2015
MT 6605 - NUMERICAL METHODS
Date: 20/04/2015
Time : 09:00-12:00
Dept. No. \square Max. : 100 Marks

PART - A

Answer ALL questions:

1. Define a pivot.
2. Write the condition of convergence in Gauss - Seidal method.
3. Regula - Falsi method is also called as \qquad .
4. Establish the Newton-Raphson formula for \sqrt{N}, where N being a positive integer.
5. Define interpolation.
6. If If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the arguments of $\mathrm{f}(\mathrm{x})=\frac{1}{x}$, show that $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\frac{1}{a b c}$.
7. State the Bessel's formula.
8. What is the range of p so that Stirling formula gives best results?
9. When does Simpson's rule gives exact result?
10. Write the modified Euler's formula.

PART - B

Answer any FIVE questions:
11. Apply Cramer's rule, solve the following system of equations $3 x+y-z=3, \quad 2 x-8 y+z=-5$, $x-2 y+9 z=8$.
12. Find a real root of the equation $\cos x-3 x+1=0$ correct to seven decimal places by the method of successive approximation.
13. Explain an derive the regula falsi formula.
14. Find a cubic polynomial which takes the following set of values $(0,1),(1,2),(2,1)$ and $(3,10)$.
15. By means of Lagrange's formula, prove that $y_{1}=y_{3}-0.3\left(y_{5}-y_{3}\right)+0.2\left(y_{-3}-y_{-5}\right)$ approximately.
16. Using Laplace - Everett's formula to obtain $\mathrm{f}(1.15)$ given that $\mathrm{f}(1)=1, \mathrm{f}(1.10)=1.049$, $\mathrm{f}(1.20)=1.096, \mathrm{f}(1.30)=1.140$.
17. Write a C program to evaluate $\int_{a}^{b} y d x$ using simpson's $1 / 3$ rule.
18. Using Tylor's series method solve $y^{1}=3 x+\frac{y}{2}, y(0)=1$ at $x=0.1$ and $x=0.2$.

PART - C

Answer any TWO questions:
$(2 \times 20=40$ marks $)$
19. a) Using Gauss-Seidel method, solve $4 x+11 y-z=33,6 x+3 y+12 z=35$, $8 x-3 y+2 z=20$.
b) Discuss the convergence of Newton - Raphson method.
20. a) Given $\sum_{1}^{10} f(x)=500426, \sum_{4}^{10} f(x)=329240, \sum_{7}^{10} f(x)=175212$ and $f(10)=40365$, find $f(1)$.
b) Given $\log _{10} 654=2.8156, \log _{10} 658=2.8182, \log _{10} 659=2.8189, \log _{10} 661=2.8202$.

Find by using Newton's divded difference formula, the value of $\log _{10} 656$.
21. a) Find the first, second derivatives of $f(x)$ at $x=1.5$ if

$x: 1.5$	2.0	2.5	3.0	3.5	4.0
$f(x): 3.375$	7.000	13.625	24.000	38.875	59.000

b) Find $\sin 45^{\circ}$ using Gauss's backward interpolation formula given that

θ	20	30	40	50	60	70	80
$\sin \theta$	0.342	0.502	0.642	0.766	0.866	0.939	0.984

22. a) The velocity v of a particle at distance s from a point on its path is given by the following table:

$\mathrm{S}(\mathrm{ft})$	0	10	20	30	40	50	60
$\mathrm{~V}(\mathrm{ft} / \mathrm{s})$	47	58	64	65	61	52	38

Estimate the time taken to travel 60 ft using Simpson's $1 / 3$ rule. Compare the result with Simpson's 3/8 rule.
b) Using Runge-kutta method of order 4 , solve for $\mathrm{y}(0.1), \mathrm{y}(0.2)$ given that $\mathrm{y}^{1}=x y+y^{2}$, $y(0)=1$.

\$\$\$\$\$\$

