LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

SIXTH SEMESTER – APRIL 2015

MT 6605 – NUMERICAL METHODS

Date : 20/04/2015 Time : 09:00-12:00 Dept. No.

Max.: 100 Marks

PART - A

(10 x 2 = 20 marks)

 $(5 \times 8 = 40 \text{ marks})$

1. Define a pivot.

Answer ALL questions:

- 2. Write the condition of convergence in Gauss Seidal method.
- 3. Regula Falsi method is also called as _____
- 4. Establish the Newton-Raphson formula for \sqrt{N} , where N being a positive integer.
- 5. Define interpolation.
- 6. If If a,b,c are the arguments of $f(x) = \frac{1}{x}$, show that $f(a,b,c) = \frac{1}{abc}$.
- 7. State the Bessel's formula.
- 8. What is the range of p so that Stirling formula gives best results?
- 9. When does Simpson's rule gives exact result?
- 10. Write the modified Euler's formula.

PART - B

Answer any **FIVE** questions:

- 11. Apply Cramer's rule, solve the following system of equations 3x+y-z = 3, 2x 8y + z = -5, x 2y + 9z = 8.
- 12. Find a real root of the equation $\cos x 3x+1=0$ correct to seven decimal places by the method of successive approximation.
- 13. Explain an derive the regula falsi formula.
- 14. Find a cubic polynomial which takes the following set of values (0,1), (1,2),(2,1) and (3,10).
- 15. By means of Lagrange's formula, prove that $y_1 = y_3 0.3 (y_5 y_3) + 0.2(y_{-3} y_{-5})$ approximately.
- 16. Using Laplace Everett's formula to obtain f(1.15) given that f(1) = 1, f(1.10) = 1.049, f(1.20) = 1.096, f(1.30) = 1.140.
- 17. Write a C program to evaluate $\int_{a}^{b} y dx$ using simpson's 1/3 rule.
- 18. Using Tylor's series method solve $y^1 = 3x + \frac{y}{2}$, y(0) = 1 at x = 0.1 and x = 0.2.

PART - C

Answer any **TWO** questions:

 $(2 \times 20 = 40 \text{ marks})$

19. a) Using Gauss-Seidel method, solve 4x + 11y - z = 33, 6x + 3y + 12z = 35, 8x - 3y + 2z = 20.

b) Discuss the convergence of Newton - Raphson method.

20. a) Given $\sum_{1}^{10} f(x) = 500426$, $\sum_{4}^{10} f(x) = 329240$, $\sum_{7}^{10} f(x) = 175212$ and f(10) = 40365, find f(1).

b) Given $\log_{10}654=2.8156$, $\log_{10}658=2.8182$, $\log_{10}659=2.8189$, $\log_{10}661=2.8202$. Find by using Newton's divded difference formula, the value of $\log_{10}656$.

21. a) Find the first, second derivatives of f(x) at x = 1.5 if

x: 1.5	2.0	2.5	3.0	3.5	4.0
f(x): 3.375	7.000	13.625	24.000	38.875	59.000

b) Find sin45° using Gauss's backward interpolation formula given that

θ	20	30	40	50	60	70	80
sin θ	0.342	0.502	0.642	0.766	0.866	0.939	0.984

22. a) The velocity v of a particle at distance s from a point on its path is given by the following table:

S(ft)	0	10	20	30	40	50	60
V(ft/s)	47	58	64	65	61	52	38

Estimate the time taken to travel 60 ft using Simpson's 1/3 rule. Compare the result with Simpson's 3/8 rule.

b) Using Runge-kutta method of order 4, solve for y(0.1), y(0.2) given that $y^1 = xy + y^2$, y(0) = 1.

\$\$\$\$\$\$